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Abstract

We formally define the fungible token coloring problem
of attributing (coloring) fungible tokens to originating
entities (minters), and present, to our knowledge, the
first practical onchain algorithm to solve it. Tracking at-
tribution of colored tokens losslessly using existing ap-
proaches such as the Colored Coins protocol is computa-
tionally intractable due to the per-wallet storage require-
ments growing in proportion to the number of minters.
Our first contribution is an elegant solution to the single-
chain token coloring problem, where colored tokens are
atomically burned and minted to ensure each wallet only
contains tokens of a single color. Our second contri-
bution is an extension to this single-chain token color-
ing algorithm to allow safe and efficient crosschain to-
ken transfers. We present ColorTrace, an onchain algo-
rithm to achieve globally consistent, economically feasi-
ble, fungible token coloring.

1 Introduction

Current decentralized finance (DeFi) applications often
rely on fungible tokens (e.g., stablecoins) to provide an
easy-to-use, reliable, and trustworthy payment mecha-
nism. However, there exists a key deficiency with current
fungible tokens: once they are issued (minted), there is
no practical onchain algorithm to keep track of the entity
(minter) that minted them. This makes it impossible to
(1) track the origin of each token as they are transferred
and redeemed, and (2) proportionally reward minters for
minting tokens. We formalize this dilemma as the fun-
gible token coloring problem of “coloring” fungible to-
kens to associate each token to the entity that originally
minted it, and present a novel algorithm to solve this
problem.
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Fungible token coloring covers the majority of the
Colored Coins problem [1, 3], with the exception of
singleton metadata attributes which have already been
solved by NFTs [2]. Applying the Colored Coins pro-
tocol to the fungible token coloring problem would loss-
lessly map tokens to minters in every wallet, which is
impractical due to two fundamental computational con-
straints: onchain storage and compute cost. Even within
a single blockchain, it is prohibitively expensive to loss-
lessly maintain the per-minter attribution for every wal-
let balance. A system of N minters would result in O(N)
storage complexity per wallet and O(N) computational
complexity to iterate over both the sender and receiver
wallets every time tokens are transferred. Therefore, any
practical token coloring algorithm must be lossy.

Our algorithm, ColorTrace, is the first to solve the fun-
gible token coloring problem in O(1) storage complexity.
This is achieved by requiring all transfers to recolor to-
kens such that the receiver wallet balance and sent tokens
are of the same color. In addition to solving the fungi-
ble token coloring problem in a single-chain context, we
solve the additional economic and safety challenges to
extend ColorTrace to support provably-safe crosschain
token transfers. The safety of crosschain transactions is
guaranteed by the delta-zero invariant, a single invariant
which we use to formally prove the safety and validity of
ColorTrace’s crosschain recoloring methods.

Crosschain token coloring opens new opportunities in
the Web3 ecosystem, and this paper focuses on one ob-
vious and powerful example: the collateral-based stable-
coin. Under the current paradigm, stablecoins are issued
in exchange for collateral, and the collateral is used to
purchase yield-bearing assets. Many minters (e.g., appli-
cations) generate demand for these stablecoins by pro-
viding services for users, yet the token issuer is unable to
proportionally reward minters due to the lack of a mecha-
nism to track the color of each fungible token. Token col-
oring enables the issuer to proportionally share yield with
minters based on their quantified contribution to overall
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Alice Bob Attribution Wallet
mint 20 mint 10 Alice: 20 Alice: 20

Bob: 10 Bob: 10
send 10→ receive 10 Alice: 20 Alice: 10

Bob: 10 Bob: 20
redeem 10 ???

Figure 1: Fair redemption requires token coloring.

demand for the stablecoin.
Without a fungible token coloring algorithm, it is im-

possible to track minter attribution for proportional yield
sharing as we demonstrate in Figure 1. In this example,
Alice and Bob mint 20 tokens and 10 tokens respectively.
Alice then sells 10 tokens to Bob, where they are mixed
with his existing holdings. Bob tries to redeem 10 tokens,
but the fungibility of the tokens makes it impossible to
decide which minter(s) to deduct attribution from.

The remainder of this paper is structured as follows:
Section 2 formally defines the fungible token coloring
problem, Section 3 details the required security proper-
ties of ColorTrace, Section 4 presents the algorithmic
foundation of our solution, Section 5 discusses Color-
Trace’s countermeasures against various attack surfaces.

2 Fungible token coloring

In this section, we formalize the fungible token coloring
problem and related terminology.

The colored token is the underlying token that is
tracked by ColorTrace, and is governed by a token con-
tract deployed on every chain. Minters generate demand
for users to transact in colored tokens, with each minter
assigned a dedicated color (i.e., an ID) that uniquely
identifies it across all blockchains. Every colored to-
ken is mapped to exactly one color, and this mapping
is tracked by the token contract. We refer to the total
number of tokens of a color within a given chain as the
local circulation, and the circulation of tokens across all
blockchains as the global circulation. User wallet bal-
ances are represented as a tuple of color and quantity,
with the balance of a user holding holdinguser tokens of
color coloruser notated as coloruser|holdinguser (e.g., B|H
for H number of Blue tokens).

The fungible token coloring problem is the challenge
of associating (coloring) each token with a specific color,
tracking the color of each colored token as they move be-
tween wallets, and maintaining a consistent record of the
proportion of global circulation of each color to the to-
tal global circulation of all colored tokens. Many aspects
of the fungible token coloring problem correspond to the
Colored Coins problem, such as the association of meta-
data to fungible tokens and the tracking of metadata as

the underlying token is transferred between users. The
fungible token coloring problem specifically deals with
the tracking of color metadata, where multiple tokens
can be tagged with the same color, and tokens of a given
color are aggregated into a single quantity. However, the
fungible token coloring problem does not cover use cases
requiring singleton attributes, as such applications would
better be served by existing solutions such as NFTs [2].

A globally unique vault, deployed on the designated
primary chain, tracks and updates the mint of each color,
which represents the sum of circulation for a given color
across all chains. This mint can be used to calculate the
contribution of a given color to the global demand across
all blockchains, which can, in turn, be used by the token
foundation to fairly distribute yields. After a token is
minted at the vault, it is transferred to the minter’s wallet
on the primary chain, from where it can be transferred to
other chains or wallets.

As mentioned in Section 1, it is prohibitively expen-
sive to update mint on the vault every time a token is
recolored on a chain other than the primary chain. This
necessitates relaxing the synchrony requirement between
mint and circulation, and handling the resulting diver-
gence in an efficiently, provably safe manner. Color-
Trace achieves this by tracking the delta (∆) between
the current circulation and the last synchronized mint
(localMint), and allowing minters to remint any posi-
tive delta to close the gap between the circulation and
localMint. As we demonstrate in this paper, each token
contract must store ∆C for every color, but does not need
to explicitly track localMintC or circulationC. How-
ever, we expect most implementations of our algorithm
to store localMintC or circulationC for better minter and
user experience (e.g., circulation observability).

Finally, the fungible token coloring problem requires
the colored token to be fungible from the perspective of
the end-users, but not necessarily the minters. Color-
Trace implements full fungibility in all user-facing and
minter-facing operations, but other solutions, such as our
recently published ColorFloat algorithm [5], may re-
quire minters to be conscious of the color of the tokens
they hold.

3 Consistency and security

In this section, we formalize the security properties
of ColorTrace and present the invariants we use to
reason about the safety of ColorTrace transactions.
All ColorTrace operations involve one or more of
three independently-consistent transaction contexts (do-
mains): the vault, chain, and packet. The vault is re-
sponsible for (1) safely linking underlying assets to col-
ored tokens and (2) tracking global per-color circulation.
The chain (sometimes referred to as local chain), is any
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blockchain in the network that executes token operations.
Finally, the packet is a special domain that participates
in two transactions–one on the source chain, and another
on the destination chain. After tokens and metadata are
written into the packet on the source chain, the packet do-
main is made accessible to the destination chain by trans-
mitting its contents using a crosschain messaging proto-
col. To avoid confusion, we refer to the packet domain
as packet, and the crosschain messaging protocol packet
as crosschain packet. Operations that involve multiple
blockchains communicate via the packet, but crosschain
packet delivery is assumed to be asynchronous.

We continue to define four properties that guarantee
the safety and fairness of all ColorTrace operations, and
formalize the invariants we leverage to reason about the
fulfillment of these properties.

Asset-circulation equivalence ensures that no operation
changes the total number of tokens in circulation with-
out a corresponding change in the holdings of underly-
ing assets. The vault is assumed to correctly enforce the
creation and destruction of tokens in exchange for under-
lying assets, and as such any transaction that changes the
global supply of tokens assets must originate from within
the vault. Thus, we enforce asset-circulation equivalence
through the global supply invariant, which states that any
operations that increase or decrease the aggregate global
supply of tokens must be fully contained within the vault.
The global supply invariant is composable, meaning a se-
quence of operations will fulfill the global supply invari-
ant if each operation individually preserves the global
supply invariant.

Conservation of error states that any divergence be-
tween the circulation of each color and the mint recorded
at the vault is accurately propagated across every opera-
tion. When combined with asset-circulation equivalence,
this guarantees the net error in the system to always be
zero. This safety property is the most important, and we
formalize it as the delta-zero invariant: ∑∆ = 0 for ev-
ery element of the power set of all domains in the net-
work. More informally, there should be no domain in the
system that violates the delta-zero invariant, and by ex-
tension no combination of domains in the system should
have a nonzero sum of deltas.

Eventual finality states that every action taken by a user
or minter will eventually be reflected in the state of the
relevant token contract(s) or vault. For operations that
affect only a single blockchain, eventual finality is triv-
ially fulfilled as the entire operation is committed in a
single local transaction. This property has two aspects–
guaranteed delivery and guaranteed execution. Opera-
tions that involve multiple blockchains rely on lossless,
only-once delivery of crosschain messages for eventual
finality. Furthermore, the effects of the operation must

eventually be applied (executed) to the state of the target
domain. While delivery is largely governed by the net-
work, execution is less trivial as asynchrony can result in
situations where certain actions cannot be executed im-
mediately after the destination domain receives the cor-
responding packet (see Section 4.2.1).

Mint-holding preservation requires that operations
never reduce a minter’s mint below the number of minted
tokens they hold. This property is what guarantees fungi-
bility for minter-facing operations; without mint-holding
preservation, minters must take explicit steps to hold to-
kens of their own color to preserve their mint. However,
as we mentioned in Section 1, the colored token is not re-
quired to be fungible for all minter-facing operations, so
this fairness property is not a hard requirement for all so-
lutions to the fungible token coloring problem. Detailed
further in Section 4.2.1, this property is guaranteed by
the delta-influence invariant which states that operations
may only change the sign of ∆C if actual tokens are re-
colored or transferred, and no operation may increase the
magnitude of ∆C by more than the number of tokens of
color C the initiator of the operation holds.

4 Design

To simplify the consistency model, we assume the set of
minters is synchronized across all chains. This can be
implemented in several different ways, such as onboard-
ing minters at the vault before accepting any transactions.

Each token contract must store ∆C for every color C
(colored delta) along with a value ∆θ (Section 4.1.3) that
tracks ∆ imbalances between different blockchains; all
∆, including ∆θ , are initially zero as there is no differ-
ence between localMint and circulation, nor are there
any ∆ imbalances between blockchains until tokens are
recolored or transferred. We refer to a positive ∆C as a
surplus–meaning more tokens of that color are in circu-
lation than are accounted for by the vault–and a negative
∆C as a deficit. If ∆ never changes, the system is trivially
consistent as there is no divergence between the state of
the vault and the global circulation.

We define six token contract methods–RemintSend,
Recolor, TransferSend, TransferReceive, SyncSend, and
SyncReceive–and three vault methods: Mint, Redeem,
and RemintReceive. Furthermore, we categorize Re-
color, TransferSend, TransferReceive, Mint, and Redeem
as the coloring layer, and the remaining methods as the
synchronization layer. The safety properties of the col-
oring and synchronization layers are isolated, and any
synchronization layer can be interchanged with the de-
sign we present in this paper provided it implements
Remint (Section 4.2.1) while fulfilling all security prop-
erties (Section 3). The remainder of this section details
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1: procedure MINT(C,q)
2: mintC← mintC +q

1: procedure REDEEM(C,q)
2: mintC← mintC−q

Figure 2: Mint and Redeem respectively increase or de-
crease the mint of color C (mintC) at the vault.

the implementation and safety properties of each method.

4.1 Coloring layer
The coloring layer is the layer that governs the color-
ing and recoloring of colored tokens, and encompasses
the user-facing methods of ColorTrace. To provide the
best user experience, the coloring layer is designed to
use minimal, deterministic per-transaction gas at the ex-
pense of creating divergence that must be reconciled by
the synchronization layer.

4.1.1 Mint and redeem

Minting issues tokens based on some value input, for ex-
ample one US dollar (USD) in exchange for one colored
token. Redeeming is the opposite of minting, burning
tokens at the vault to represent the release or expiry of
the underlying value (e.g., transfer 1 USD to a bank ac-
count). Both minting and redeeming can only occur in a
local context on the primary chain, thus achieving instant
finality and by extension eventual finality. Minting and
redemption directly change mint at the vault, and cor-
respondingly increases the balance of the minter’s wal-
let on the primary chain–neither of these operations af-
fect ∆, and thus trivially satisfy the delta-zero and delta-
influence invariants. Finally, as both minting and re-
deeming occur in the vault, asset-circulation equivalence
is assumed to be fulfilled by the vault implementation.

4.1.2 Recolor

To achieve O(1) storage complexity transfers, Color-
Trace enforces that all transfers be conducted in a single
color. However, this potentially introduces some diver-
gence (increase in magnitude of ∆) when tracking circu-
lation across transfers. If the sender and receiver of a
token transfer have different colored balances, one of the
balances must be recolored to match the other. While we
assume in the scenario, for simplicity, that the sent quan-
tity is recolored to the receiver’s color, any policy can
be implemented for choosing which balance to recolor,
and the specific policy used is orthogonal to ColorTrace.
When CS|Q is recolored to CR|Q, ∆CS is decreased by
Q and ∆CR is increased by Q. Because no other deltas

change other than the sender and receiver colors on the
local chain, the net change in the sum of all ∆ is zero,
preserving the delta-zero invariant and by extension ful-
filling conservation of error. The quantity of tokens does
not change and the recoloring operation is atomic, ful-
filling asset-circulation equivalence and eventual finality
respectively.

The initiator of the recolor operation is limited to re-
coloring up to the quantity of tokens they hold, imply-
ing that mint-holding is preserved as tokens held by a
minter cannot be recolored unless the minter themselves
recolor it. Put more formally, if the minter is holding
localMint tokens and a different recoloring initiator is
holding K tokens of the same color, by definition the
circulation must be at least localMint +K. The caller
can only induce a change in circulation by up to magni-
tude K, bounding the final resulting circulation such that
circulation≥ localMint = holdingminter.

4.1.3 Transfer

In this section, we present the token transfer algorithm in
the context of a crosschain transfer although the safety
properties are identical for crosschain and single-chain
transfers. The crosschain transfer operation is com-
posed of separate send and receive transactions, whereas
a single-chain transfer would simply combine these two
operations into the same local transaction. Transfers
between blockchains involve messaging asynchrony be-
tween the debit from the sender’s balance and the credit
to the receiver’s balance, significantly complicating the
consistency (safety) model.

TransferSend is the source transaction of the crosschain
transfer, and moves q tokens of color C from the source
chain into the packet. Crosschain transfers must be delta-
zero on both the source and destination chains. When
transferring tokens of a color C, the delta-zero invari-
ant is trivial to guarantee when ∆C ≤ 0 and difficult
when ∆C > 0. The reason for this is not immediately
apparent, but consider the case where ∆C ≤ 0; the to-
kens can be transferred directly without changing ∆C, as
conceptually, circulationC and localMintC are reduced
by the same amount. The fact that the user is holding
K tokens guarantees that circulationC ≥ K, and because
circulationC = localMintC +∆C ≤ localMintC, the user
can safely infer that K ≤ circulationC ≤ localMintC.

However, crosschain transfers when ∆C > 0 are less
straightforward, as the user cannot guarantee the local
availability of minted tokens to back the entire trans-
ferred balance. The key insight that makes crosschain
transfers efficient in ColorTrace is our use of ∆θ (delta
theta), a bookkeeping mechanism to track the flow of
(fungible) surpluses between chains. When a surplus
flows out from a chain, it is matched by an increase in
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1: procedure TRANSFERSEND(C,q)
2: if q > ∆C > 0 then
3: Revert
4: holdingCuser ← holdingCuser −q
5: if ∆C > 0 then
6: surplus← min(q,∆C)
7: else
8: surplus← 0
9: ∆C ← ∆C − surplus

10: ∆θ ← ∆θ + surplus
11: holdingCpkt ← holdingCpkt +q
12: ∆Cpkt ← surplus
13: ∆θpkt ←−1× surplus

1: procedure TRANSFERRECEIVE(pkt)
2: holdingCpkt ← holdingCpkt −q
3: ∆Cpkt ← surplus
4: ∆θpkt ←−1× surplus
5: holdingCdst ← holdingCdst +q
6: ∆Cdst ← ∆Cdst +∆Cpkt
7: ∆θdst ← ∆θdst +∆θpkt

Figure 3: TransferSend moves q tokens from color C into
the packet, and TransferReceive correspondingly moves
it from the packet into the destination token contract.

∆θ , and when a surplus flows into a chain it is matched
by a decrease in ∆θ . This ∆θ facilitates constant space
crosschain transfers while maintaining the delta-zero in-
variant on the local chain (∑C ̸=θ ∆C +∆θ = 0). In the
remainder of this paper, we refer to non-∆θ deltas as col-
ored, in contrast to ∆θ which can be thought of as an
uncolored delta.

∆θ can continue to grow in magnitude if left alone,
and a large negative ∆θ on a chain implies many local
colored surpluses cannot be reminted due to insufficient
local colored deficits. We reconcile these imbalances
through ∆θ synchronization (Section 4.2.2), an opera-
tion that combines a positive ∆θ with an equal amount of
negative colored ∆ (deficit) and transfers it to a different
chain with a negative ∆θ . Importantly, ∆θ makes it sim-
ple to guarantee source chain convergence upon ∆θ syn-
chronization by blocking synchronizations that would in-
crease the magnitude of ∆θ on the source chain.

There are exactly two cases when invoking Trans-
ferSend, either ∆C ≤ 0 or ∆C > 0∧q≤ ∆C ; all other cases
are explicitly prohibited by Figure 3 TransferSend line 2.
In the first case, tokens are sent directly without chang-
ing ∆C or ∆θ . In the second case, the surplus is sent from
the source chain to the destination chain with a change in
∆θ to compensate for the surplus outflow.

TransferSend never violates asset-circulation equiva-
lence as it atomically removes q tokens from the source

chain and adds them to the packet. Conservation of er-
ror and mint-holding are met as ∆θ and/or ∆C change by
some quantity that is bounded by the number of trans-
ferred tokens. Importantly, both the source chain and
packet meet the delta-zero invariant. Finality is instant
as there exists no condition that would prevent the trans-
fer of held tokens from the source chain into the packet.

TransferReceive is the destination transaction of the
crosschain transfer, moving q tokens of color C from the
packet into the destination chain along with any ∆θ and
∆C necessary to preserve the delta-zero invariant. Asset-
circulation is met as tokens are simply moved from the
packet into the destination chain and these tokens can
be assumed to have safely originated from the source
chain by composability of the global supply invariant.
The delta-zero nature of the packet guarantees the delta-
zero invariant upon delivery to the destination chain;
this ensures unconditional applicability of the packet to
the destination chain (eventual finality). The deltas on
the destination chain only change by the corresponding
deltas stored in the packet, transitively fulfilling the mint-
holding and error-conservation properties.

4.2 Synchronization layer

We continue by describing the design of the synchroniza-
tion layer. In this paper, we focus on presenting one spe-
cific configuration of the synchronization layer that al-
lows crosschain reminting and omnidirectional synchro-
nization. More concretely, RemintSend can be called on
a secondary chain that is different from the primary chain
where RemintReceive is invoked. Likewise, synchro-
nization can send deltas between any two blockchains.
This design was chosen for its optimality within the eco-
nomic constraints of currently existing blockchains, but
it is not the only viable design for the synchronization
layer. It is possible to limit source and destination se-
mantics for reminting and ∆θ synchronization to rede-
fine the algorithm with different attack surfaces and user
experience.

4.2.1 Remint

Reminting is the mechanism by which minters (M) cap-
ture the value of additional gained circulation (∆M > 0)
in their mint, simultaneously penalizing other “victim”
minters (V) who have lost circulation (∆V < 0). To
remint, a portion (q) of the positive ∆M (surplus) for color
M is matched with a victim color V that has a sufficiently
negative ∆V (deficit) such that ∆M−q≥ 0∧∆V +q≤ 0.
The surplus is added to the mint of the corresponding
color, and the deficit is accordingly redeemed in the same
crosschain transaction with instant guaranteed finality.
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Action walletsrc ∆θsrc ∆src walletpkt ∆θpkt ∆pkt walletdst ∆θdst ∆dst

Initial B|100 ∆B0
Recolor B|100 R|100 ∆R100

to R|100 ∆B -100
TransferSend R|0 100 ∆R0 R|100 -100 ∆R100

(R|100) ∆B -100
TransferReceive R|0 100 ∆R0 R|100 -100 ∆R100

(R|100) ∆B -100
SyncSend R|0 0 ∆R0 100 ∆B -100 R|100 -100 ∆R100
(∆θ = 100) ∆B0

SyncReceive() R|0 0 ∆R0 R|100 0 ∆R100
∆B0 ∆B -100

RemintSend R|0 0 ∆R0 ∆R100 R|100 0 ∆R0
(∆R100, [∆B -100]) ∆B0 ∆B -100 ∆B0

Figure 4: ColorTrace uses ∆θ to facilitate constant space, delta-zero transfers. Nonzero ∆θ must eventually be balanced
(via syncSend and SyncReceive) to enable all minters to fully capture their remint potential.

1: procedure REMINTSEND(M,V,q)
2: if q > 0∧∆M −q≥ 0∧∆V +q≤ 0 then
3: ∆M ← ∆M −q
4: ∆Mpkt ← q
5: ∆V ← ∆V +q
6: ∆Vpkt ←−q

1: procedure REMINTRECEIVE(pkt)
2: if mintV +∆Vpkt ≥ 0 then
3: mintM ← mintM +∆Mpkt
4: mintV ← mintV +∆Vpkt

Figure 5: RemintSend sends a request to remint a sur-
plus of q for color M (minter) using an equivalent deficit
from color V (victim) as collateral. RemintReceive ap-
plies this request to the vault.

Multiple remints can be composed as the remint oper-
ation itself is commutative, allowing many remint oper-
ations to be encoded into the same packet for efficiency.
A negative ∆θ cannot be used as the counterparty to a
surplus, so it is possible for a surplus to be un-remintable
if ∆θ < 0, which we address using ∆θ -synchronization
(Section 4.2.2).

Preserving the mint-holding guarantee requires Rem-
intSend to never induce ∆M to become negative nor ∆V
to become positive. Consider the case where the minter’s
holding is equal to localMintV +∆V = circulationV and
∆V + q > 0. A remint request that disregards this con-
dition would reduce localMintV by q + ∆V , resulting
in a final value of localMintV of localMintV − q <
localMintV + ∆V , which in turn violates mint-holding
preservation as localMintV −q < circulationV . Concep-
tually, a hypothetical single entity holding circulationV
minted tokens could have a subset of them converted to

surplus (i.e., non-minted tokens), implying that holding
minted tokens does not guarantee collection of yield.

RemintSend debits the surplus from ∆M to transfer it
into the packet, then credits the corresponding deficit
to ∆V to transfer it into the packet. Note that neither
M nor V is allowed to be θ . The surplus and deficits
can no longer be leveraged in any manner once they
have been moved to the packet domain, as these spe-
cific delta values are permanently eliminated after be-
ing moved into the vault. No tokens are actually burned,
minted, nor moved in RemintSend (this occurs in Rem-
intReceive), trivially fulfilling asset-circulation equiva-
lence. The remint of the surplus and slashing of the
deficit is reflected instantly on the source chain with the
implicit assumption that the remint request will eventu-
ally be applied to the vault.

The delta-zero invariant is fulfilled by definition as no
additional divergence (increase in magnitude of ∆) is in-
troduced and the RemintSend packet must include a sur-
plus and a corresponding deficit. RemintSend explicitly
prevents the change of any ∆C from negative to positive
or vice-versa; this property is crucial in preserving mint-
holding as allowing a non-positive ∆ to increase past 0 is
congruent to converting localMint to surplus.

RemintReceive debits the surplus from the packet con-
text and credits it to the mint on the vault. In the same
transaction, the deficit is similarly transferred from the
packet domain into the vault (the packet is implicitly dis-
carded rather than explicitly zeroed out) where it is added
to the mint. The delta-zero packet transitively guaran-
tees the delta-zero invariant on the destination chain, as
the entire contents of the packet are moved into the des-
tination token contract. No tokens are moved, minted,
or redeemed, thus trivially fulfilling the global supply in-
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variant.
However, due to the asynchronous nature of packet

transmission, it is possible, in rare cases, for the system
to reach a situation where a remint packet cannot be ap-
plied to the vault without reducing one of the mints below
zero. There are two solutions to this problem–the first is
to use a vector clock to enforce gapless happens-before
execution of remint requests. The second is to aggregate
the un-executable remint requests into a shared pool to
be applied after the aggregated remints result in a consis-
tent state on the vault, but due to the network overhead
of vector clocks, we opt to use this second solution. An
example of the above scenario is as follows:

1. Initially, mintB = 100, mintG = 0, mintR = 0

2. Recolor B|100 to G|100

3. Remint ∆G100 against ∆B -100 (remint R1)

4. Recolor G|100 to B|100

5. Remint ∆B100 against ∆G -100 (remint R2)

6. Recolor B|100 to R|100

7. Remint ∆R100 against ∆B -100 (remint R3)

Due to crosschain network asynchrony, it is not guaran-
teed that R1 will be delivered to the vault before R2, but
R2 cannot be applied to the vault before R1 due to the
initial state mintG = 0 and R2 requiring mintG ≥ 100. In
addition, if R3 is delivered and executed before R1 and
R2, neither R1 nor R2 can ever be executed because ex-
ecuting R3 results in mintG = 0 and mintB = 0, necessi-
tating the remint pool.

An alternative design to the remint operation of the
synchronization layer is to remove the ability to remint
directly from secondary chains, and instead require
minters to directly remint deltas from the remint pool.
Reminting becomes a two-step operation under this de-
sign, with the first step synchronizing deltas to the remint
pool, and the second step atomically applying a delta-
zero remint request to the vault.

4.2.2 ∆θ synchronization

As mentioned in Section 4.2.1, ∆θ cannot be used as the
counterparty for reminting, necessitating some mecha-
nism to balance nonzero ∆θs to ensure sufficient col-
ored deficits are available on the local chain to facilitate
reminting of surpluses. ∆θ synchronization is used to
move colored deficits from chains that have more colored
deficit than surplus to chains that have more surplus than
colored deficit. Without synchronization, it is possible
for surpluses to be un-remintable due to lack of colored
deficit on the local chain; ∆θ is an indicator of which
chains have a net colored deficit (∆θ > 0), and which
have a net colored surplus (∆θ < 0).

1: procedure SYNCSEND(C,q)
2: if q > 0∧∆C +q≤ 0∧∆θ −q≥ 0 then
3: ∆C ← ∆C +q
4: ∆Cpkt ←−q
5: ∆θ ← ∆θ −q
6: ∆θpkt ← q

1: procedure SYNCRECEIVE(pkt)
2: ∆C ← ∆C +∆Cpkt
3: ∆θ ← ∆θ +∆θpkt

Figure 6: SyncSend moves q deficit from color C into the
packet, and SyncReceive correspondingly moves it from
the packet into the destination token contract state.

At a high level, ∆θ synchronization can be thought
of as a separate abstraction layer to the main recolor-
ing propagation layer. For example, it is feasible to al-
low direct synchronization of ∆θ and colored ∆ to the
remint pool instead of between secondary chains, though
we opted for the latter option for economic reasons.

SyncSend transfers d tokens worth of deficit from a color
C from a source chain with a negative ∆θ into the packet
such that d ≤ ∆θ ∧ d ≤ |∆C |. Because SyncSend is the
source transaction it achieves instant finality. By requir-
ing ∆θ > 0 (Figure 6 SyncSend line 2), and only per-
mitting colored deficits to be synchronized, ColorTrace
guarantees source chain convergence where ∆θ always
approaches zero as a result of SyncSend. The delta-zero
invariant is fulfilled as ∆C + d +∆θ − d = ∆C +∆θ = 0,
guaranteeing that both the source chain and packet do-
mains are delta-zero. No tokens are moved nor recolored
in SyncSend, trivially fulfilling the global supply invari-
ant. SyncSend explicitly forbids the increase in magni-
tude or change in sign of any ∆C (Figure 6 SyncSend
line 2) to fulfill the delta-influence invariant. For simplic-
ity, we define SyncSend and SyncReceive in the context
of a single deficit taken from a single color, but because
the delta-zero invariant is commutative a single packet
may contain many composed SyncSend requests.

SyncReceive accepts the delta-zero payload from a
SyncSend packet and applies it to the local token con-
tract, increasing ∆θ by d and increasing the deficit of
∆C by d. SyncSend guarantees the delta-zero and delta-
influence invariants in the packet domain, so atomically
moving this set of deficits and ∆θ from the packet to
the destination chain domain transitively maintains the
delta-zero and delta-influence invariants on the destina-
tion chain. No tokens are moved or recolored in SyncRe-
ceive, trivially fulfilling the global supply invariant. The
packet payload is unconditionally applied to the destina-
tion chain state, so finality is guaranteed so long as the
packet is delivered by the network.
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Figure 7: Positive values are notated in green and nega-
tive values in red. The transfer example sends tokens of
a surplus color from the source chain to the destination
chain. The synchronization example illustrates synchro-
nizing a colored deficit and positive ∆θ . The reminting
example demonstrates reminting an M-colored surplus
collateralized against a V-colored deficit.

An alternative way to design the ∆θ synchronization
layer is to restrict the synchronization of deltas to be
unidirectional to the remint pool on the primary chain.
Under this design, it is unnecessary to guarantee source
chain convergence on SyncSend and divergence or im-
balance can be directly handled in the remint pool.

5 Discussion

The full architecture of ColorTrace is outlined in Fig-
ure 7, which illustrates the crosschain transfer of a sur-
plus, ∆θ synchronization, local recoloring, and reminting
in a system of two secondary chains (source and destina-
tion), the vault, and three packets.

ColorTrace makes it possible for holding-agnostic
remint batching. In a lossless token coloring scheme,
an application can only remint as many tokens as they
hold—that is, they must hold a token to burn it in ex-
change for an asset which is then used to remint a new to-
ken. Applications that create demand for very large asset
flows but only hold a relatively small quantity of tokens
would be forced to remint small quantities of tokens–
very often under a lossless scheme–thus resulting in high
crosschain messaging overheads and transaction fees. In
a ColorTrace deployment, this application can simply re-
color tokens as they flow into their wallet under the hope
that some portion of their recolorings are preserved in the

outflow. The application owner (minter) can then wait an
arbitrary amount of time for an arbitrarily large surplus
to accumulate before reminting. This allows minters to
optimize price:benefit ratio on remint fees and capture
yield proportional to their contribution to the ecosystem.

5.1 Attack surfaces and countermeasures

Note that it is possible–in ColorTrace–to violate all in-
variants if any of the participating blockchains is com-
promised or malicious. A malicious or faulty network
can also potentially violate the global supply invariant,
one such example being the loss of network liveness re-
sulting in the indefinite lockup of tokens or deltas in a
packet. These issues can be solved by using a permis-
sionless, lossless network such as LayerZero [4], but the
choice of network is orthogonal to this paper.

One potential attack vector is what we term flash rem-
inting. A minter can gain a disproportionate distribution
by acquiring a surplus for a very short period of time via
a flash loan and reminting that surplus. This can be miti-
gated through a combination of timelocks and reminting
fees. First, we enforce that tokens added to a surplus
or deficit can only be reminted or slashed respectively
after a timelock has expired (e.g., 1 block). Second, we
tune the reminting fees to be high enough that minters are
not incentivized to remint unless they are confident their
mint will not be redeemed for at least a certain number of
distribution periods. This is not expected to be the case
for flash reminters, as their reminted surplus is likely to
quickly decay into a deficit.

Another potential attack vector is what we call the
fugitive deficit attack. Theoretically, an entity can con-
solidate their deficits along with a corresponding ∆θ on a
single chain, then SyncSend their deficit upon observing
in the mempool a remint request that uses their color’s
deficit as a counterparty. This prevents the aforemen-
tioned remint request from slashing the attacker’s deficit
and can cause grief due to failed remint requests. This
attack requires the entity to hold a significant amount of
assets to prevent ∆θ on the victim chain from becom-
ing negative (and thus blocking their attempt to move
deficit), but in theory would allow a single entity that
controls two colors to double the yield of their underly-
ing funds. This problem can be fixed using a threshold
control mechanism to temporarily restrict the movement
of specific-colored deficits, or by restricting the routing
of ∆θ flows to prevent the creation of a tight loop on
a small set of low-cost blockchains. In practice, there
must also be a threshold for ∆θ synchronization, as small
deficits can be created using a small amount of capital
and would cost the synchronizing entity potentially large
gas fees for the source and destination transactions on
top of the crosschain messaging fees. In addition, the
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source chain and the destination chain for a synchroniza-
tion request should be different, to prevent trivial griefing
by attackers seeking to hide their deficit. Economic and
deficit availability semantics must be carefully defined
and implemented by the organization managing the to-
ken, but these details are orthogonal to this paper.

6 Conclusion

We present ColorTrace, an algorithm that implements ef-
ficient onchain attribution of fungible tokens by solving
the token coloring problem. A vault on the primary chain
governs the association of underlying value to onchain
colored tokens and token contracts deployed to a collec-
tion of independent blockchains conduct transactions and
periodically synchronize token recolorings to the vault.
ColorTrace is divided into a coloring layer and synchro-
nization layer. The coloring layer implements O(1) to-
ken transfers with predictable gas consumption for all
user-facing operations, but introduces entropy into the
system in the form of token recolorings and chain-local
∆ imbalances (nonzero ∆θ ). This divergence in the sys-
tem is resolved by the synchronization layer, which im-
plements safe and globally consistent synchronization of
recolorings to the vault. Both the coloring and synchro-
nization layers are provably safe by ensuring the net error
in the system is zero via the delta-zero invariant. Color-
Trace opens the potential for blockchain applications to
integrate more deeply with fungible tokens and enables a
more equitable Web3 ecosystem.
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